Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam: Insights from First-Principles Calculations.

نویسندگان

  • Silvan Kretschmer
  • Hannu-Pekka Komsa
  • Peter Bøggild
  • Arkady V Krasheninnikov
چکیده

The polymorphism of two-dimensional (2D) transition-metal dichalcogenides (TMDs) and different electronic properties of the polymorphs make TMDs particularly promising materials in the context of applications in electronics. Recently, local transformations from the semiconducting trigonal prismatic H phase to the metallic octahedral T phase in 2D MoS2 have been induced by electron irradiation [ Nat. Nanotech. 2014 , 9 , 391 ], but the mechanism of the transformations remains elusive. Using density functional theory calculations, we study the energetics of the stable and metastable phases of 2D MoS2 when additional charge, mechanical strain, and vacancies are present. We also investigate the role of finite temperatures, which appear to be critical for the transformations. On the basis of the results of our calculations, we propose an explanation for the beam-induced transformations, which are likely promoted by charge redistribution in the monolayer due to electronic excitations combined with formation of vacancies under electron beam and buildup of the associated mechanical strain in the sample. As this mechanism should be relevant to other 2D TMDs, our results provide hints for further development and optimization of electron-beam-mediated engineering of the atomic structure and electronic properties of 2D TMDs with subnanometer resolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane ...

متن کامل

Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles

We calculate from first principles the electronic structure and optical properties of a number of transition metal dichalcogenide (TMD) bilayer heterostructures consisting of MoS2 layers sandwiched with WS2, MoSe2, MoTe2, BN, or graphene sheets. Contrary to previous works, the systems are constructed in such a way that the unstrained lattice constants of the constituent incommensurate monolayer...

متن کامل

MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.

We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For M = Mo, Cr, W; X = S, Se, all heterobilayers show semiconducting characteristics with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the...

متن کامل

Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers.

In the pursuit of ultrasmall electronic components, monolayer electronic devices have recently been fabricated using transition-metal dichalcogenides. Monolayers of these materials are semiconducting, but nanowires with stoichiometry MX (M = Mo or W, X = S or Se) have been predicted to be metallic. Such nanowires have been chemically synthesized. However, the controlled connection of individual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 8 13  شماره 

صفحات  -

تاریخ انتشار 2017